Philadelphia University

Lecture Notes for 650364

Probability \& Random Variables

Chapter 1:

Lecture 3: Total Probability, Bayes' Theorem and Independent Events

Department of Communication \& Electronics Engineering

Instructor
 Dr. Qadri Hamarsheh

Email: ghamarsheh@philadelphia.edu.jo
Website: http://www.philadelphia.edu.jo/academics/qhamarsheh

Probability

1)Introduction

2)Set Definitions
3)Set Operations
4)Probability Introduced Through Sets and Relative Frequency
5)Joint and Conditional Prohahility
6)Total Probability and Bayes' Theorem
7)Independent Events
8)Combined Experiments

9)Bernoulli Trials

6)Total Probability and Bayes' Theorem

\checkmark If the events $B_{1}, B_{2}, \ldots B_{N}$ constitute a partition of the sample space S such that

1) $\cup_{n=1}^{N} B_{n}=S$
2) $B_{i} \cap B_{j}=\varnothing$

Collectively Exhaustive mutually exclusive
\checkmark The probability $P(A)$ of any event defined on a sample space S can be expressed in terms of conditional probabilities:

$$
P(A)=\sum_{n=1}^{N} P\left(A \mid B_{n}\right) * P\left(B_{n}\right)
$$

Which is known as the total probability of event \boldsymbol{A}

$$
P(A)=\sum_{n=1}^{N} P\left(A \cap B_{n}\right)=\sum_{n=1}^{N} P\left(A \mid B_{n}\right) P\left(B_{n}\right)
$$

${\underset{n=1}{N} B_{n}=S, B_{m} \cap B_{n}=\varnothing \text { for all } m \neq n}$

Prove:

Since $A \cap S=A \Rightarrow$

$$
A \cap S=A \cap\left(\bigcup_{n=1}^{N} B_{n}\right)=\bigcup_{n=1}^{N}\left(A \cap B_{n}\right)
$$

The events $\left(A \cap B_{n}\right)$ are mutually exclusive, then

$$
P(A)=P(A \cap S)=P\left[\bigcup_{n=1}^{N}\left(A \cap B_{n}\right)\right]=\sum_{n=1}^{N} P\left(\left(A \cap B_{n}\right)\right)
$$

\checkmark Bayes' Theorem:

- Bayes' rule is one of the most important rules in probability theory.
- Bayes' theorem is often referred to as a theorem on the probability of causes.
- From the conditional probability (If $P(A) \neq 0$ and $P(B) \neq 0$):

$$
\begin{gathered}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \\
\text { and }
\end{gathered}
$$

$$
P(B \mid A)=\frac{P(B \cap A)}{P(A)}
$$

- Bayes' theorem is obtained by equating these two expressions:

$$
\begin{gathered}
P(A \cap B)=P(A \mid B) * P(B)=P(B \mid A) * P(A) \\
P(A \mid B) * P(B)=P(B \mid A) * P(A) \\
\left.P(A \mid B)=\frac{P(B \mid A) * P(A)}{P(B)} \quad \text { ii(Bayes' theorem }\right)
\end{gathered}
$$

- Sample space and intersection of events: Generalized Bayes' theorem
- In the case of three events $\bar{A}_{1}, \bar{A}_{2}, \bar{A}_{3}$ are mutually exclusive and collectively exhaustive (probabilities of all events = l and construct the sample space)
- B has some common in $\bar{A}_{1}, \mathcal{A}_{2}$, and \mathbb{A}_{3}

$$
\underline{B}=\left(A_{1} \cap B\right) U\left(A_{2} \cap B\right) \cup\left(A_{3} \cap B\right)
$$

From equation (i)

$$
\begin{aligned}
& P(B)=P\left(B \mid A_{1}\right) * P\left(A_{1}\right)+P\left(B \mid A_{2}\right) * P\left(A_{2}\right)+P\left(B \mid A_{3}\right) * P\left(A_{3}\right) \\
& P(B)=\sum_{i=1}^{n} P\left(B \mid A_{i}\right) * P\left(A_{i}\right)
\end{aligned}
$$

\checkmark Putting all together (substitute iii in ii) we get

$$
P(A \mid B)=\frac{P(B \mid A) * P(A)}{\sum_{i=1}^{n} P\left(B \mid A_{i}\right) * P\left(A_{i}\right)}
$$

Generalized form of the Bayes' Theorem
\checkmark Example: An elementary binary communication system consists of a transmitter that sends one of two possible symbols (a 1 or a 0) over a channel to a receiver. The channel occasionally causes errors to occur so that a 1 shows up at the receiver as a 0 , and vice versa.

Denote by $B_{i} ; i=1,2$, as the events the symbol before the channel and $A_{i} ; i=1,2$, as the events the symbol after the channel.
o The probabilities of receiving symbol " $A 1$ " and " $A 2$ " are:

$$
\begin{aligned}
& \mathrm{P}\left(A_{1}\right)=\mathrm{P}\left(A_{1} \mid B_{1}\right) \mathrm{P}\left(B_{1}\right)+\mathrm{P}\left(A_{1} \mid B_{2}\right) \mathrm{P}\left(B_{2}\right)=(0.9)(0.6)+(0.2)(0.4)=0.62 \\
& \mathrm{P}\left(A_{2}\right)=\mathrm{P}\left(A_{2} \mid B_{1}\right) \mathrm{P}\left(B_{1}\right)+\mathrm{P}\left(A_{2} \mid B_{2}\right) \mathrm{P}\left(B_{2}\right)=(0.1)(0.6)+(0.8)(0.4)=0.38
\end{aligned}
$$

\circ The probability that $B 1$ is sent if $\bar{A} 1$ is received (using Bayes' theorem):

$$
P\left(B_{1} \mid A_{1}\right)=\frac{P\left(A_{1} \mid B_{1}\right) \cdot P\left(B_{1}\right)}{P\left(A_{1}\right)}=\frac{(0.9)(0.6)}{0.62}=0.87
$$

- Similarly for:

$$
\begin{aligned}
& P(B 2 \mid A 1)=0.13 \\
& P(B 2 \mid A 2)=0.84 \\
& P(B 1 \mid A 2)=0.16
\end{aligned}
$$

- The total probability of error for the system:

$$
\begin{aligned}
&\left.P_{e}=P\left(A_{1} \mid B_{2}\right) P\left(B_{2}\right)+P\left(A_{2} \mid B_{1}\right) P\left(B_{1}\right)\right)= \\
&(0.2)(0.4)+(0.1)(0.6)=0.14
\end{aligned}
$$

\checkmark Example: In a certain assembly plant, three machines, $\mathbf{B}_{1}, \mathbf{B}_{2}$, and B_{3}, make $30 \%, 45 \%$, and 25% respectively of the products. It is known from past experience that $2 \%, 3 \%$ and 2% of the products
made by each machine, respectively, are defective. Now suppose that a finished product is randomly selected.
a) What is the probability that it is defective?

- Solution:

Events: $\quad \mathbb{A}$ the product is defective B_{1} the product is made by machine B_{1}
B_{2} the product is made by machine B_{2}
B_{3} the product is made by machine B_{3}
Using total probability theorem

$$
\begin{gathered}
P(A)=P\left(B_{1}\right) P\left(A \mid B_{1}\right)+P\left(B_{2}\right) P\left(A \mid B_{2}\right)+P\left(B_{3}\right) P\left(A \mid B_{3}\right)= \\
0.3 * 0.02+0.45 * 0.03+0.25 * 0.02= \\
0.006+0.0135+0.005=0.0245
\end{gathered}
$$

b) If a product was chosen randomly and found to be defective, what is the probability that it was made by machine \mathbf{B}_{3} ?

- Solution: Using Bayes' rule

$$
\begin{array}{r}
P\left(B_{3} \mid A\right)=\frac{P\left(B_{3}\right) P\left(A \mid B_{3}\right)}{P\left(B_{1}\right) P\left(A \mid B_{1}\right)+P\left(B_{2}\right) P\left(A \mid B_{2}\right)+P\left(B_{3}\right) P\left(A \mid B_{3}\right)} \\
P\left(B_{3} \mid A\right)=\frac{0.005}{0.006+0.0135+0.005}=\frac{\mathbf{0 . 0 0 5}}{0.0245}=\frac{10}{49}
\end{array}
$$

\checkmark Example: A box contains 6 green balls, 4 black balls, and . All balls are equally likely (probable) to be drawn. What is the probability of drawing two green balls from the box if the first drawn ball is not replaced?

$$
P(G \cap G)=P(G \mid G) P(G)=(5 / 19)(6 / 20)=0.0789
$$

\checkmark In Bayes' theorem $\boldsymbol{P}\left(\boldsymbol{B}_{\boldsymbol{n}}\right)$ are usually referred to as a Priori probabilities.
\checkmark The $P\left(A \mid B_{n}\right)$ are numbers typically known prior to conducting the experiment.
\checkmark The $P\left(B_{n} \mid A\right)$ are called a Posteriori probabilities

7)Independent Events

\checkmark The two nonzero probabilities events A and B are called statistically independent if the probability of occurrence of one event is not affected by the occurrence of the other event.
\checkmark If events A and B are statistically independent then they can both occur.
\checkmark Mathematically:

- First approach for testing the Independent Events

$$
P(A \mid B)=P(A) \text { and } P(B \mid A)=P(B)
$$

Conditions B doesn't affect in \bar{A}.
\checkmark Example: From HBO example from previous lecture

$$
\begin{aligned}
& P(W W \mid F)=\frac{0.05}{0.54}=0.093 \\
& P(W W)=0.25
\end{aligned}
$$

Therefore the events are NOT independent as $0.093 \neq 0.25$
\circ Second approach for testing the Independent Events:

$$
P(A \cap B)=P(A) \cdot P(B) \quad \text { (Product rule) }
$$

\checkmark Example: From HBO example from previous lecture

$$
\begin{gathered}
P(W W \cap F)=0.05 \\
\text { And }
\end{gathered}
$$

$$
P(W W) * P(F)=0.25 * 0.54=0.14
$$

Therefore NOT independent as $0.05 \neq 0.14$
\checkmark Example: rolling a Dice and flipping a coin are independent events, so the probability of getting 2 and a Heads is

$$
P(2 \cap H)=P(2) * P(H)=\frac{1}{6} * \frac{1}{2}
$$

\checkmark Example: In an experiment, one card is selected from an ordinary 52card deck. Define events:

$$
\begin{aligned}
& \bar{A}=\{\text { select a lking }\} \\
& \boldsymbol{B}=\{\text { select a jack or queen }\} \\
& \mathbf{C}=\{\text { select a heart }\}
\end{aligned}
$$

We find:

$$
\begin{aligned}
& P(A)=4 / 52, P(B)=8 / 52, P(C)=13 / 52 \\
& P(A \cap B)=0 \neq P(A) P(B)=(4 / 52)(8 / 52) \\
& P(A \cap C)=1 / 52=P(A) P(C)=(4 / 52)(13 / 52) \\
& P(B \cap C)=2 / 52=P(B) P(C)=(8 / 52)(13 / 52)
\end{aligned}
$$

Thus,

- A and B are not independent
- A and C are independent
- B and C are independent
- A and B are mutually exclusive
\checkmark Multiple Events: In the case of three events $\boldsymbol{A}_{1}, \mathbb{A}_{2}, \mathbf{A}_{3}$ are independent if they are pairwise independent:

$$
\begin{aligned}
& P\left(A_{j} \cap A_{k}\right)=P\left(A_{j}\right) * P\left(A_{k}\right), \quad j \neq \boldsymbol{k}=1,2,3, \ldots \\
& \quad \text { And also independent as a triple } \\
& P\left(A_{1} \cap A_{2} \cap A_{3}\right)=P\left(A_{1}\right) * P\left(A_{2}\right) * P\left(A_{3}\right)
\end{aligned}
$$

\checkmark Example: Find the probability of drawing an ace on the first, second, third, and fourth cards from an ordinary 52-card deck. Assume that:
a) Each is replaced after drawing

$$
\begin{aligned}
P(A 1 \cap A 2 & \cap A 3 \cap A 4)=P(A 1) P(A 2) P(A 3) P(A 4) \\
& =(4 / 52)(4 / 52)(4 / 52)(4 / 52)
\end{aligned}
$$

Events $A 1, A 2, A 3$, and $A 4$ are independent
b) Each is not replaced after drawing
$P(A 1 \cap A 2 \cap A 3 \cap A 4)=(4 / 52)(3 / 51)(2 / 50)(1 / 49)$
Events A1, A2, A3 and A4 are not independent
\checkmark It the two events have nonzero probabilities then by comparing mutually exclusive events $P(A \cap B)=0$ and statistically independent events $P(A \cap B)=P(A) * P(B)$, we can easily establish that two events cannot be both mutually exclusive and statistically independent.

